Mechanistic basis for overcoming platinum resistance using copper chelating agents.
نویسندگان
چکیده
Platinum-based antitumor agents are widely used in cancer chemotherapy. Drug resistance is a major obstacle to the successful use of these agents because once drug resistance develops, other effective treatment options are limited. Recently, we conducted a clinical trial using a copper-lowering agent to overcome platinum drug resistance in ovarian cancer patients and the preliminary results are encouraging. In supporting this clinical study, using three pairs of cisplatin (cDDP)-resistant cell lines and two ovarian cancer cell lines derived from patients who had failed in platinum-based chemotherapy, we showed that cDDP resistance associated with reduced expression of the high-affinity copper transporter (hCtr1), which is also a cDDP transporter, can be preferentially resensitized by copper-lowering agents because of enhanced hCtr1 expression, as compared with their drug-sensitive counterparts. Such a preferential induction of hCtr1 expression in cDDP-resistant variants by copper chelation can be explained by the mammalian copper homeostasis regulatory mechanism. Enhanced cell-killing efficacy by a copper-lowering agent was also observed in animal xenografts bearing cDDP-resistant cells. Finally, by analyzing a public gene expression dataset, we found that ovarian cancer patients with elevated levels of hCtr1 in their tumors, but not ATP7A and ATP7B, had more favorable outcomes after platinum drug treatment than those expressing low hCtr1 levels. This study reveals the mechanistic basis for using copper chelation to overcome cDDP resistance in clinical investigations.
منابع مشابه
The Overlapping Transport Mechanism for cDDP and Copper
Platinum (Pt)-based antitumor agents have been the mainstay of cancer chemotherapy for the last three decades. While multiple mechanisms are responsible for treatment failure, deficiency in drug transport is an important contributor. The human high-affinity copper (Cu) transporter-1 (hCtr1) can also transport Pt-based drugs including cisplatin (cDDP) and carboplatin. Reduced hCtr1 expression fr...
متن کاملThe Stabilising and Chelating Effects of Green and Roasted Coffee Extracts
ABSTRACT: Oxidation might be regarded as one of the most important reaction in oils and fats. Prooxidants namely iron and copper intensify and catalyze the oxidation while the chelating agents might retard or delay this process. Citric acid, phosphoric acid, some of phenolic compounds and phospholipids are considered as the compounds that chelate the prooxidant metals and through this mechanism...
متن کاملDesferal regulates hCtr1 and transferrin receptor expression through Sp1 and exhibits synergistic cytotoxicity with platinum drugs in oxaliplatin-resistant human cervical cancer cells in vitro and in vivo
The development of resistance to platinum drugs in cancer cells severely reduces the efficacy of these drugs. Thus, the discovery of novel drugs or combined strategies to overcome drug resistance is imperative. In addition to our previous finding that combined D-penicillamine with platinum drugs exerts synergistic cytotoxicity, we recently identified a novel therapeutic strategy by combining an...
متن کاملMechanistic comparison of human high-affinity copper transporter 1-mediated transport between copper ion and cisplatin.
The human high-affinity copper transporter (hCtr1) plays an important role in the regulation of intracellular copper homeostasis. hCtr1 is involved in the transport of platinum-based antitumor agents such as cisplatin (CDDP); however, the mechanisms that regulate hCtr1-mediated transport of these agents have not been well elucidated. We compared the mechanisms of hCtr1-mediated transport of cop...
متن کاملOvercoming platinum resistance through the use of a copper-lowering agent.
Low levels of human copper transporter 1 (hCtr1) mRNA are associated with a shorter progression-free survival after platinum-based therapy. Pretreatment with a copper-lowering agent such as trientine enhanced hCtr1-mediated platinum uptake. Therefore, we conducted a pilot study (NCT01178112) of carboplatin and trientine with the goal of resensitizing patients with advanced cancer to platinum ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 11 11 شماره
صفحات -
تاریخ انتشار 2012